
 

 

 

 

SHARED SPOOL MODS 

Installation Documentation  

 

For Jes2 1.7 & 1.8 

 

Installation Instructions 

 

1 



 

Table of Contents 
 
 
 
General Information and Overview .................................................................................... 4 

What are the SHARED SPOOL MODS, and what can they do for you? ...................... 4 
Interaction with WLM Resources and Scheduling Environments.................................. 8 
Compatibility and Support of the SHARED SPOOL MODS ........................................ 8 
History of the SHARED SPOOL MODS, at least as I know it. ..................................... 9 
JOB Level Method of Invoking the SHARED SPOOL MODS features ..................... 10 
SYSTEM Level SHARED SPOOL MODS features.................................................... 10 

The JES2 $DJ command........................................................................................... 11 
$HASP943 messages ................................................................................................ 12 
New JES2 Commands for the Shared Spool Mods .................................................. 12 
Additional Information ............................................................................................. 13 

Installation Procedures...................................................................................................... 14 
Step 0 - Always take a backup before you start............................................................ 14 
Step 1 - Apply the Shared Spool Usermods.................................................................. 14 
Step 2 - Update the JES2 parms.................................................................................... 15 

The format of the SSM statement ............................................................................. 16 
SSM Statement Options - ......................................................................................... 17 
SMFNUM=0............................................................................................................. 17 
SMFOPT=................................................................................................................. 17 
BEAFTER={ PREMOD | DELAY }........................................................................ 17 
BATIME=###........................................................................................................... 17 
UIDMASK=8 characters each is either an ‘*’ or a ‘U’ ............................................ 17 
JBNMAX=####........................................................................................................ 18 
JBNMASK=a mask of 8 characters each either an ‘*’ or a ‘U’ ............................... 18 
ALLOWS={ ON | OFF }.......................................................................................... 19 
CLASSOPT={ ON | OFF }....................................................................................... 19 
CLASSLIM(class specification)=###....................................................................... 19 

Make Updated Modules available to the JES2 address space ...................................... 20 
Perform any final testing - the JES2 mods are now installed!...................................... 20 
Let me know where you are - for updates new releases and a coffee mug! ................. 20 

How the exits work, and what each does –....................................................................... 21 
Module STJTABS, plus macro definitions................................................................... 21 
Module STSCX50A, JES2 end of input user exit......................................................... 21 
Module STSCX04A and STSCX54A, exit04A and exit54a ........................................ 21 
Module STSCX54B, exit 54B ...................................................................................... 22 
Module STSCX06A, exit 06......................................................................................... 22 
Module STSC2050........................................................................................................ 22 
Module STSCX20A, exit 20......................................................................................... 22 
Module STSCX49A, exit 49......................................................................................... 23 

2 



Modules STSCX19A, STSCX24A, and STSSMTBS .................................................. 23 
SMF RECORD LAYOUTS.......................................................................................... 24 

A few final notes for /*BEFORE and /*AFTER ...................................................... 28 
 
 
 
 

3 



 

General Information and Overview 
 

What are the SHARED SPOOL MODS, and what can they do 
for you? 
  The SHARED SPOOL MODS are the latest version of what was previously known as 
the MELLON SHARED SPOOL MODS.  We all owe a great deal to Mellon Bank for 
originating these mods, but in light of the fact that they have been maintained outside of 
Mellon Bank for a dozen or more years, and that I have completely rewritten them twice 
in that time, I will be referring to them as the SHARED SPOOL MODS from this time 
forward.  
 
  The SHARED SPOOL MODS have traditionally provided additional job selection 
criterion that could be used by one job to indicated that it should be selected for execution 
on a system containing a specific resource, or that it should be selected or not selected 
based on the execution status or resource requirements of other related jobs.  Please note 
that it is NOT necessary to be running a Multi-Access Spool Configuration, or MAS to 
take advantage of this package.  Beginning with this release of the SHARED SPOOL 
MODS the control of jobs has been extended to include operational controls that can be 
used to place limits on the total number of jobs that may run concurrently in each job 
class on each system within a MAS, regardless of the availability of JES2 or WLM 
initiators.  We use this feature to provide operational controls that allow us to use WLM 
managed initiators for jobclasses that must be otherwise regulated, such as job classes 
that require a finite number of tapes.  Other system level controls can be used to limit 
concurrently executing jobs from a singe user, or group of users based on either jobname 
or userid.  
 
The SHARED SPOOL MODS enhance the job selection routines that JES2 uses when 
selecting the next job for execution from the input queue by adding new requirements and 
qualifications to submitted jobs.  Throughout this document, whenever we refer to job 
selection, we mean the process of selecting a job from the input queue for assignment to 
an initiator and its immediate execution. 
 
In addition to job selection enhancements, this version of the SHARED SPOOL MODS 
provides extended control features for WLM managed initiators.  The additional control 
allows your operations staff to stop, start, or limit the maximum number of jobs selection 
for individual job classes, or for all job classes.  These same limits are extended to 
traditional JES2 initiators as well as to WLM managed initiators.  You are allowed to 
limit the number of jobs in concurrent execution based on a userid mask or jobname 
mask, so that you can prevent a single user, or group of users from monopolizing the 
available initiators in the system.  
 

4 



The new requirements that can be used to qualify when a job is eligible to be selected to 
run, or on which system it can run if you are in a MAS (Multi-Access Spool 
configuration), are expanded by the SHARED SPOOL MODS beyond existing native 
JES2 mechanisms.  The new selection capabilities are listed below. 
  The SHARED SPOOL MODS have traditionally provided additional job selection 
criterion that could be used by one job to indicated that it should be selected for execution 
on a system containing a specific resource, or that it should be selected or not selected 
based on the execution status or resource requirements of other related jobs.  Please note 
that it is NOT necessary to be running a Multi-Access Spool Configuration, or MAS to 
take advantage of this package.  Beginning with this release of the SHARED SPOOL 
MODS the control of jobs has been extended to include operational controls that can be 
used to place limits on the total number of jobs that may run concurrently in each job 
class on each system within a MAS, regardless of the availability of JES2 or WLM 
initiators.  We use this feature to provide operational controls that allow us to use WLM 
managed initiators for jobclasses that must be otherwise regulated, such as job classes 
that require a finite number of tapes.  Other system level controls can be used to limit 
concurrently executing jobs from a singe user, or group of users based on either jobname 
or userid. 
Additionally job selection can be altered in the following ways -  

• All jobs can be delayed from the time they are first read until they are eligible for 
execution by some number of seconds.  

• Delay a job by some specified amount of time, up to 100 hours. 
• Delay a job until some specific time of day occurs.  

 
System specifications can be set to restrict jobs, even jobs using WLM managed initiators 
in the following ways -  

• A limit may be set for the number of jobs that can run in each job class. 
• A limit may be set that limits the number of active jobs based on characters in the 

jobname.  
• A limit may be set that limits the number of active jobs based on characters in the 

userid associated with each job.  
A special option is available to prevent the use of the ‘$SJ(jobnumber)’ to force a job into 
execution if it is needed.   If the $SJ command is allowed, it will also override all of the 
above options that could prevent a job from moving into execution.  
 
 
Here are some examples of how these enhancements to job selection can be used. 
 
Assuming you have some number of jobs that can only run where a particular resource 
exists – a CICS region, a vendor program, or maybe where extra tape drives are attached, 
and assuming those resources may be available on different systems in the MAS 
configuration each time your jobs are submitted, you can still ensure your job is only 
initiated on the correct systems, by using the “/*ROUTE XEQ scheduling environment name” 
JECL statement if those resources are described by a WLM scheduling environment, and 
the WLM scheduling environment is activated only where the resource exists.  The 
resource described by a WLM scheduling environment does not have to represent real 

5 



resources.  You could for example have a resource defined to WLM named 
“BATCHWINDOW” that operations or automation enables, or disables whenever they 
want, and jobs that are submitted with a “/*ROUTE XEQ BATCHWINDOW” statement 
would only be eligible for job selection when, and only on the systems where, the 
BATCHWINOW resource is enabled. 
 
The “/*ROUTE XEQ HERE’ statement allows jobs to execute only on the LPAR that 
they are submitted from, working like a dynamic SYSAFF= parameter.  This option is 
maintained for compatibility reasons only, since the same thing can now be accomplished 
with standard JCL. 
 
The “/*CNTL resource_name,EXC | SHR” statement can be used to create an arbitrary 
resource name and have any jobs you wish coordinate their availability for execution 
based on the need for exclusive or shared access of that arbitrary resource name.  No 
previous resource name setup is required to use this feature; only agreement among the 
participating jobs on the resource name you wish to co-ordinate your job execution on.   
 
One use of this feature is to serialize or single thread a group of jobs, where only one may 
run at a time.  All of the jobs to be serialized would use a “/*CNTL” statement that uses 
the EXC or exclusive option, and the same resource name.  Any resource name will do, it 
just has to be the same in all participating jobs.   As soon as one of the jobs in the group 
is selected for execution all other jobs with the same “/*CNTL” statement will become 
ineligible for selection until the first job ends, and so on.  Many times a DD statement 
with a dummy dataset name and a disposition of old is used to accomplish nearly the 
same thing, but that solution potentially ties up initiators that could be used to process 
other ready work and actually creates a throughput bottleneck.  The use of the “/*CNTL” 
statements prevents the competing jobs from even being initiated, and so does not tie up, 
or waste initiators while each job waits for it’s turn to run.  It also will not produce the 
annoying messages that jobs are waiting for exclusive use of the dummy dataset name.  A 
more complex example using this feature is particularly valuable to systems programmers 
using SMP/e, where multiple jobs may run concurrently using the SHR option with a 
common name as long as each job is not actually performing updates, but a job that 
performs updates must run alone is coded to use the same resource name but with an 
EXC or EXCLUSIVE option specified, which ensures it will always run alone.  In my 
shop we use our SMP/e CSI name as a resource name, and SMP/e LIST or CHECK jobs 
are coded with a SHR option, while APPLY, or RESTORE jobs are coded with an EXC 
for the same resource name.  At the request of ‘power’ users of this feature, a new option, 
PRG or PURGE, is now available that will prevent any other jobs regardless of whether 
or not they have a SHR or EXC specification from running until after the job with the 
PRG is selected and run.  The PURGE option effectively says, “This job must run alone, 
and no other job with this resource name may start until after the job with the PRG 
specification has completed, and it must be the NEXT job to run holding this resource 
name. 
 
The “/*AFTER”, “/*BEFORE”, and “/*WITH” and “/*WITHOUT” control statements 
can be used to dictate the order of job selection for a group of jobs in relation to each 

6 



other.  There are some specific options, other than the most obvious ones, that can be 
specified for each system that determine rules that must be met before any of the jobs 
controlled by these statements is satisfied.  The processing options that can be specified 
for these types of statements are covered later in this document.   
 
  A job class limit can be specified for each MAS member that limits the number of 
concurrently executing jobs in any execution class.  Different limits can be set for each 
class, and each can be dynamically changed via operator command.  The limits are 
effective for both traditional JES2 managed job classes as well as WLM managed job 
classes.  This option might be used when putting a single lpar into maintenance mode, it 
is possible with just a couple of commands to stop all further job selection, except for the 
jobclass or jobclasses that maintenance jobs will run in, and then to restore the original 
environment that probably allowed any jobclass to execute.  This option can be used 
when WLM management is in effect for a jobclass, to allow jobs in a single jobclass to 
run on only a single MAS member.  This option can also be used to prevent WLM from 
starting too many jobs of a particular class, before it has a chance to determine the overall 
effect of the jobs on the system. 
 
  A mask value can be set that is used to select characters from the userid or jobname that 
is associated with each job, and the number of concurrently executing jobs may be 
limited for all jobs with a matching resultant value.   
 
  Masks are composed of up to 8 characters, with each character being either an asterisk, 
or a character “U”.  The characters that form the userid are compared against the mask, 
and for each position in the mask with a ‘U’ the corresponding character from the userid 
is extracted.  All of the extracted characters from the userid are then concatenated, to 
form an intermediate result.  All jobs with the same intermediate result are considered to 
belong to the same group, and it is that group that the limit, if any, is imposed against.   
 
As an example of limiting active jobs based on userids and a mask value, assume  your 
installation has a standard for creating userids that says the userids are formatted with the 
following scheme; 
 
 Positions 1-2 represent location, LL 
 Positions 3-4 Are an individuals initials, II 
 Positions 5-6 Are the department, DD 
 Positions 7-8 Are job function, FF 
 
A userid could then be said to be in the form of  C’LLIIDDFF’.   
 
Next if you wished to limit the number of jobs that were owned by users in each 
department, a mask of ****UU** could be set.  With that mask, only positions 5 and 6 of 
the userid would be taken into account when determining if the maximum number of jobs 
that are allowed for that group.  Likewise, a mask of **UU**** could be set and then the 
limit would be imposed for jobs that were owned by userids with the same first and last 
initials, or a mask of UU**UU** could be set to limit the number of active jobs for each 

7 



location and department combination.  Obviously then a mask of UUUUUUUU would 
limit the number of jobs for each userid.  
 
  The masking feature is used exactly the same way with the JOBNAME as it is with the 
USERID.  
  
 

Interaction with WLM Resources and Scheduling Environments 
 
  One of the primary job selection criterions available through the SHARED SPOOL 
MODS is the availability of a particular resource name being available on a particular 
system.  In the past, we maintained these names in a table within the SHARED SPOOL 
MODS code; and provided JES2 commands that would alter the state of the resources, 
either on or off.  We now use WLM Scheduling Environment names instead.  The 
scheduling environment names are the same ones displayed on the SDSF SE panel.  The 
scheduling environments are on when all of the resource names that make up each 
environment are also on.  WLM resource names are the same names displayed on the 
SDSF RES panel.  The WLM scheduling environment names are what are matched on 
the “/*ROUTE XEQ scheduling environment name” JECL statements.  This function is 
virtually identical to the new SCHENV parameter on the jobcard.  In fact, we substitute 
the internal value of the SCHENV with what we find in the /*ROUTE XEQ card only if 
there is no current value set for SCHENV.  These mods supported the function long 
before JES2 adopted the facility, which appears to have been modeled after the SHARED 
SPOOL MODS, and arose out of a long standing SHARE requirement.   
 
  While these mods continue to support the older style /*ROUTE XEQ statements to 
route jobs for execution based on resource locations, we strongly suggest that the older 
/*ROUTE XEQ statements for job selection be replaced by the new IBM supported 
SCHENV= parameter on the jobcard. 

 

Compatibility and Support of the SHARED SPOOL MODS 
 
  The SHARED SPOOL MODS, as they exist today, do not modify any JES2 source 
directly, other than the $USERCBS macro that is intended to be modified by the user, 
and only makes use of fully supported and documented exits and facilities; we see no 
reason why they may become unsupportable in the future. 
 
 
 
 
 
 
 

8 



 
 
 
 
 
 
 
 
 
 
 

History of the SHARED SPOOL MODS, at least as I know it. 
 
These mods were originally designed and maintained by MELLON Bank, and we owe a 
great deal of gratitude to MELLON for its original design and forethought.  I have 
maintained the SHARED SPOOL MODS personally for over ten years, and they were 
maintained by others at this company for several years before that time.  Around the turn 
of the millennium, I completely rewrote the mods.  The intent of the rewrite was to 
incorporate the new JES2 functions that make use of WLM resource names and 
scheduling environments, and to repackage the mods such that they were all contained in 
standard JES2 table pairs and exits, so that we would make no direct changes to the JES2 
source code.  That objective was met.  The conversion effort for 1.7 was such that we 
virtually rewrote everything one more time.  While in their current state, they are not 
simple exits, they are all standard documented exits, all using standard, documented 
interfaces to JES2 and WLM, and are quite manageable.  I will refer to these mods 
simply as the ‘SHARED SPOOL MODS’ from now on. 

9 



 

JOB Level Method of Invoking the SHARED SPOOL MODS 
features 
 
The SHARED SPOOL MODS features may be invoked by individual jobs via 8 JECL 
statements, which are: 
 
“/*CNTL XEQ resource, { EXC | SHR | PRG}” 
“/*ROUTE XEQ scheduling environment name | HERE ” 
“/*WITH jobname” 
“/*WITHOUT jobname” 
“/*AFTER jobname” 
“/*BEFORE jobname” 
“/*HOLDFOR hh:mm:ss” 
“/*HOLDTIL hh:mm:ss” 
 
For a detailed explanation of what each JECL statement does, and its format, please refer 
to the “SHARED SPOOL MODS for JES2 1.7 Users Guide and Documentation”. 
 
In terms of operational support for the SHARED SPOOL MODS, the mods expand the 
results of the $DJ command to include SHARED SPOOL MODS information for each 
job that has one or more of the SSM’s JECL statements.  We also created a new 
informational message $HASP890 with detailed information about each of the JECL 
statements that are recognized in a job’s JCL.   These are both documented below. 
 

SYSTEM Level SHARED SPOOL MODS features 
The features that are not associated with specific job selection, i.e. the features not listed 
in the item directly above this one, are all SYSTEM level options, and can be set either 
through JES2 PARMS or through the use of new JES2 commands.  Examples of the 
features that can be specified at a system level include; 
 

• Specifying whether or not to write SMF records. 
• Specifying the level of SMF recording. 
• Specifying the SMF number if SMF recording is active.  
• Specifying a maximum number of jobs that can run in each job class. 
• Specifying a maximum number of jobs that can be run based on a masked userid. 
• Specifying a maximum number of jobs that can be run based on a masked 

jobname.  
 
It is important to note three things about the system level options, first they are effective 
for the individual JES2 system, and they are NOT MAS wide in effect.  Second, they can 
be altered through simple JES2 commands as well as fixed JES2 parms.  And finally, all 
of the system level options are optional, none of them are required.  

10 



 

The JES2 $DJ command 
 
  The JES2 $DJ command output has been extended to include information about 
/*CNTL statements.  Up to five CNTL names are displayed qualified with an “E” for 
exclusive, or an “S” for shared.  One /*WITH jobname, one /*WITHOUT, one 
/*BEFORE and one /*AFTER jobname, will each be displayed if those types of 
statements are present in the job.  Examples of the extended displays are given below.  
Please note that the information is included in either the standard or long versions of the 
command. 
 
 
Altered Display Commands –  
 
-$DJ(25926)          
 
$HASP890 JOB(T0SM139)                                                
$HASP890 JOB(T0SM139)   STATUS=(AWAITING EXECUTION),CLASS=X,         
$HASP890                PRIORITY=6,SYSAFF=(ANY),HOLD=(NONE),         
$HASP890                DELAY RSN=HOLDTIL TIMR,AFTER=T0SM150,        
$HASP890                BEFORE=T0SM160,WITH=T0SM140,WITHOUT=T0SM138, 
$HASP890                HOLDFOR=00:02:00¦ELAPSED,HOLDTIL=10:20:00,   
$HASP890                CNTL=(RESNAME1-E,MYSTUFF-S,YOURSTUF-P,       
$HASP890                COMMON-S,RESNAME1-E)                                          
 
 

The BOLD text in the display  above is all as a result of SHARED SPOOL MODS 
statements in the JCL.  First the ‘DELAY RSN=’ is only displayed for jobs with 
SHARED SPOOL MODS statements in the JCL, and indicates whether the job has been 
bypassed for job selection due to a SHARED SPOOL MODS restriction or if it has 
simply never been selected by JES2 as a candidate for execution.  In a future release I 
intend to make the ‘DELAY RSN’ field available for every job in the system.  In the case 
above the job is held due to the HOLDTIL timer value of 10:20:00.  The AFTER=, 
BEFORE=, WITH=, and WITHOUT= all indicate the jobname associated with each like 
named control statement.  The HOLDFOR= and HOLDTIL= fields indicate the time 
values specified, and whether or not they have elapsed.  In this case the HOLDFOR time 
has expired, the HOLDTIL time has not.  The CNTL= field lists the values specified in 
up to 5 /*CNTL statements followed by either a -S for shared, -E for exclusive, or -P for 
purge.  
 
 
The LONG version of the Display Job command is shown below, it also contains the 
same SHARED SPOOL MODS information that the short form of the display does. 
 
 
-$DJ(25926),LONG    
 
$HASP890 JOB(T0SM139)                                                
$HASP890 JOB(T0SM139)   STATUS=(AWAITING EXECUTION),CLASS=X,         
$HASP890                PRIORITY=6,SYSAFF=(ANY),HOLD=(NONE),         
$HASP890                CMDAUTH=(LOCAL),OFFS=(),SECLABEL=,           

11 



$HASP890                USERID=T0SM0,SPOOL=(VOLUMES=(JES2T3),TGS=1,  
$HASP890                PERCENT=0.0009),ARM_ELEMENT=NO,CARDS=16,     
$HASP890                REBUILD=NO,SRVCLASS=BATTSTMD,SCHENV=TAPE,    
$HASP890                SCHENV_AFF=(TSPC,TSPD),CC=(),DELAY=(),       
$HASP890                CRTIME=(2007.116,13:42:07),                  
$HASP890                DELAY RSN=HOLDTIL TIMR,AFTER=T0SM150,        
$HASP890                BEFORE=T0SM160,WITH=T0SM140,WITHOUT=T0SM138, 
$HASP890                HOLDFOR=00:02:00¦ELAPSED,HOLDTIL=10:20:00,   
$HASP890                CNTL=(RESNAME1-E,MYSTUFF-S,YOURSTUF-P,       
$HASP890                COMMON-S,RESNAME1-E)                      
                                                   

$HASP943 messages 
 

In addition informational messages, $HASP493 and $HASP494 are written to the log as 
jobs with /*CNTL, /*WITH, /*BEFORE, or /*AFTER are read.  Examples of the 
messages follow. 
 
These messages were issued for the job displayed above, as it was submitted.  These form 
one of the audit trails available for used SHARED SPOOL MODS options.  The other 
audit trail option is of course the optional SMF recording.  
 
$HASP943 T0SM139  * -- HOLD UNTIL = 10:20:00        --  
$HASP943 T0SM139  * --   HOLD FOR = 00:02:00        --  
$HASP943 T0SM139  * -- WITH     JOBNAME = T0SM140   --  
$HASP943 T0SM139  * -- WITHOUT  JOBNAME = T0SM138   --  
$HASP943 T0SM139  * -- CONTROL INFO = RESNAME1,EXC  --  
$HASP943 T0SM139  * -- CONTROL INFO = MYSTUFF ,SHR  --  
$HASP943 T0SM139  * -- CONTROL INFO = YOURSTUF,PRG  --  
$HASP943 T0SM139  * -- CONTROL INFO = COMMON  ,SHR  --  
$HASP943 T0SM139  * -- CONTROL INFO = RESNAME1,EXC  --  
$HASP943 T0SM139  * -- AFTER    JOBNAME = T0SM150   --  
$HASP943 T0SM139  * -- BEFORE   JOBNAME = T0SM160   -- 
 
New JES2 Commands for the Shared Spool Mods  
 
  In support of the new features we now have fir the first time, JES2 parm statements that 
can be included in your JES2 startup parms.  The values set, or defaulted to, in the JES2 
parms can be displayed using JES2 commands, and can be modified by using JES2 
commands.  
 
The general form of the new display commands are; 
 $D SSM,option,option,option,… 
The $D SSM command, with no options will display all SHARED SPOOL MODS 
system level options at one time - about 15 lines of console output. 
 
The general form of the new modify commands are; 
 $T SSM,option,option,option… 
 

12 



The specific options that can be displayed or changed are -  
SMFNUM - the SMF number to use when writing SSM SMF records. 
SMFOPT - The SMF recording level option 
BEAFTER - the specialized options to take when using /*BEFORE and /*AFTER. 
BATIME - # of seconds to delay all jobs before job selection, it BEAFTER=DELAY 
UIDMAX - the maximum number of concurrently active jobs with matching UIDMASK 
values. 
UIDMASK - the MASK to apply to the submitters, userid before checking the UIDMAX 
value.  
JBNMAX - the maximum number of concurrently active jobs with matching JBNMASK 
values.  
ALLOWS - determines if $SJ commands are allowed or not.  
CLASSOPT - determines if CLASSLIM values are effective. 
CLASSLIM(jobclass) - sets the limit of concurrently active jobs for each jobclass.  
 
These commands are explained in much greater detail in the SHARED SPOOL MODS 
OPERATIONS COMMANDS document.  
 
 
 

Additional Information 
Detailed information about all of the features is available in the ‘SHARED SPOOL 
MODS User Documentation’.  
 

13 



Installation Procedures 
 

Step 0 - Always take a backup before you start 
   
This is an SMP/e install, so backup accordingly.  You will be replacing JES2 macro 
$USERCBS - it was designed to be updated by the user, all other elements are NEW, we 
are not going to update, modify, or replace any existing JES2 macros, source, or modules, 
but you ALWAYS want to be able to get back to where you started if you need to! 

                                                                        

Step 1 - Apply the Shared Spool Usermods 
 
The SHARED SPOOL MODS have been repackaged so that they are a single usermod 
which I have named LSES500.  It contains several SRC, JCLIN, and MAC member 
additions to JES2.  The additional members are added directly to the IBM provided JES2 
source libraries SHASMAC and SHASSRC, and are packaged, to assemble into the IBM 
provided link library, SHASLNKE.  They do NOT replace any existing macros, or source 
elements with the exception of the $USERCBS macro which is designed to be updated, 
these are all new elements and they are detailed at the end of this section.  To install the 
package you simply run a RECEIVE / APPLY CHECK / APPLY sequence of SMPe 
jobs.  Then make the updated SHASLNKE library available to the system as you would 
normally do after any other JES2 maintenance, update your JES2 initialization parms, 
and warm start JES2.  
 
The mods will add new source members to DDDEF SHASMAC and SHASSRC and will 
place new linkedited modules into DDDEF SHASLNKE.  The JCLIN also references 
standard SYSLIB DD datasets; 
 SYS1.MACLIB 
 SYS1.MODGEN 
 SYS1.SHASMAC 
 SYS1.SHASSRC 
 SYS1.AHASMAC 
 SYS1.AHASSRC 
 SYS1.AMACLIB 
 SYS1.AMODGEN 
 
  The names should be fine unless the distribution of JES2 changes significantly.  If it 
does, it may be necessary to modify the JCLIN before receiving the usermods.  
 
  Just to restate this one more time, the macros, source, and modules are all new - except 
for macros $USERCBS which is intended by IBM to be updated.  The source, macros, 
and load modules will all be placed into standard JES2 libraries.  With the exception of 

14 



$USERCBS, NO IBM SOURCE, MACROS, OR LOAD MODULES are either modified 
or replaced.  These are all new elements, that will be implemented via standard exits and 
interfaces.  
 
  NOTE * * *   This will result in a large number of large assemblies.  I had to change the 
SMP/e Utility entry for ASMA90 (or whatever your ASM utility entry points to) to have 
a parm  value that includes “SIZE(MAX)”,  and then also use a REGION of 18M on the 
JOBCARD and EXEC statement in the APPLY step.  Otherwise I got some really odd 
error messages.  You should get a return code of zero for all the assemblies and links. 
  
  You may have been better than I, and already had size(max) setup of course.  

Step 2 - Update the JES2 parms 
 
After SMP installation, update JES2 parms by adding the following three groups of JES2 
parms statements: LOADMOD statements, EXIT statements, and SSM statements.  
 
The LOADMOD statements: 
 
LOADMOD(STJTABS)  /*     DYNAMIC TABLE DEFINITIONS FOR JQE EXT. #JES7*/ 
                      /*                                             */ 
LOADMOD(STSSMTBS) /*     DYNAMIC TABLE DEFINITIONS FOR SSMT     #JES7*/ 
                 /*                                                  */ 
LOADMOD(STSCX04A)  /*   CALLS EXIT 54 ROUTINES                       */ 
LOADMOD(STSCX54A) STORAGE=CSA  /*ROUTE XEQ RESNAME AND VALIDATES     */ 
                 /*                                                  */ 
LOADMOD(STSCX54B) STORAGE=CSA /*  OTHER SPECIAL JECL STATEMENTS      */  
LOADMOD(STSCX05B)  /*   PREVENTS PURGING JOBS BY RANGE               */ 
                 /*                                                  */ 
LOADMOD(STSCX06A)   /*  TURNS /*ROUTE CNTL,XX INTO SCHENV= VALUES    */ 
                 /*                                                  */ 
LOADMOD(STSCX19A)  /* INITIALIZATION STMTS (FOR SSM)                 */ 
                 /*                                                  */ 
LOADMOD(STSCX20A)  /*            JCT TO JQE COPY ROUTINE             */ 
                 /*                                                  */ 
LOADMOD(STSCX24A)  /* POST-INITIALIZATION (FOR SSM)                  */ 
                 /*                                                  
*/LOADMOD(STSCX49A)   /* ACCEPTS OR REJECTS JES2 NEXT CHOICE OF JOBS */ 
                 /*                 ( THE QGOT ROUTINE )             */ 
LOADMOD(STSCX50A) STORAGE=CSA /* MOVE JCTX TO THE JQE EXTENSION      */ 
                 /*                                                  */ 
 
NOTE ** the LOADMOD statements for STJTABS and STSSMTBS, and the EXIT 
statements for EXIT(19) and EXIT(24) should be physically placed BEFORE 
the SSM parmlib statements.  
 
 
The EXIT statements: 
 
EXIT(004) ROUTINE=(EXIT04A),STATUS=ENABLED                              

15 



              /* A = CALLS EXIT54 ROUTINES                           */ 
EXIT(054) ROUTINE=(EXIT54A,EXIT54B),STATUS=ENABLED                      
              /* A = GETS ROUTE XEQ INFO                             */ 
              /* B = GETS "BEFORE/AFTER/INFORM/HOLDFOR/TIL ETC. "    */ 
EXIT(006) ROUTINE=(EXIT06A),STATUS=ENABLED                              
                      /* A = SETS SCHENV BASED ON ROUTE XEQ CARDS    */ 
EXIT(019) ROUTINE=(EXIT19A),STATUS=ENABLED                              
EXIT(024) ROUTINE=(EXIT24A),STATUS=ENABLED                              
                      /* 19A = BUILDS TEMP SSMT NAME/TOKEN PAIR + CB */ 
                      /* 24A = BUILDS PERM SSMT N/T PAIR             */ 
EXIT(020) ROUTINE=(EXIT20A),STATUS=ENABLED                              
EXIT(050) ROUTINE=(EXIT50A),STATUS=ENABLED                              
                      /* COPIES JCT INFO INTO THE JQE EXTENSION      */ 
EXIT(049) ROUTINE=EXIT49A,STATUS=ENABLED                                
                      /* IMPLEMENT BEFORE AFTER WITH CNTL STATEMENTS */ 
EXIT(054) ROUTINE=(EXIT54A,EXIT54B),STATUS=ENABLED                      
EXIT(100) ROUTINE=EXIT100A,STATUS=ENABLED                               
                      /* JES2X100=STSC  FCB SETUP ROUTINES           */ 
 
NOTE ** the LOADMOD statements for STJTABS and STSSMTBS, and the EXIT 
statements for EXIT(19) and EXIT(24) MUST physically be placed BEFORE 
the SSM parmlib statements.  
 
 
 
The SSM statements: (this is an example only - set the parms the way you want them). 
 
SSM SMFOPT=NONE,        /* SMF recording level */                                      
    SMFNUM=216,         /* SMF number used to write smf records */                     
    BEAFTER=PREMOD,     /* BEFORE/AFTER processing options  */                         
    BATIME=3,           /* Delay time, if BEAFTER=DELAY is selected*/ 
    UIDMAX=256,         /* 256 jobs per 5 position uid       */                        
    JBNMAX=0,           /* 0 = no max based on JBNMASK value */     
    UIDMASK=UUUUU***,   /* Mask used with UIDMAX to limit jobs by UID*/                
    JBNMASK=********,   /* Mask used with JBNMAX to limit jobs by JBN*/                
    ALLOWS=OFF,         /* ALLOW or DISALLOW $SJ commands to be used*/                 
    CLASSOPT=ON,        /*enforce or don’t enforce limits by jobclass*/                
    CLASSLIM(A-Z,0-9)=234  /*limit for each class - if classopt=on*/   
 
NOTE ** the LOADMOD statements for STJTABS and STSSMTBS, and the EXIT 
statements for EXIT(19) and EXIT(24) MUST physically be placed BEFORE 
the SSM parmlib statements.  
 
                                            
 
 
 

The format of the SSM statement   
 
SSM SMFNUM=###,SMFOPT={ACTION | INPUT | ALL | NONE}, 
BEAFTER={PREMOD | DELAY }, BATIME=tt,UIDMAX=###, 

16 



UIDMASK=mmmmmmmm, JBNMASK=mmmmmmmm, ALLOWS={ ON | OFF }, 
CLASSOPT={ ON | OFF }, CLASSLIM(class specification)=### 
 

SSM Statement Options - 

 SMFNUM=0  
SMFNUM specifies the number of the smf record that the SHARED SPOOL MODS 
with write it’s SMF data to, if SMFOPT is not set to NONE.  Use a number between 200 
and 255 that is not being used by any other products in your installation.  At SunTrust we 
have smf number 216 reserved for this purpose.  The default of zero specifies that no smf 
records will be written.   
 

SMFOPT= 
SMFOPT= specifies the level of SMF recording, specify either ALL for all SMF record 
types, INPUT for a record of all SHARED SPOOL MODS input statements, ACTION 
for actions taken by the SHARED SPOOL MODS, and NONE if you do not want any 
SMF records written.  
 

BEAFTER={ PREMOD | DELAY } 
BEAFTER specifies how the BEFORE and AFTER statements are to be processed, 
PREMOD specifies that they should be handled as they have historically been handled.  
DELAY specifies that all jobs should wait on the input queue for a length of time 
specified in the BATIME operand.  Delay can be used to correct some unintended job 
sequencing that can occur when multiple jobs are submitted simultaneously and they 
appear to get to the input queue “out of order”. -  PLEASE see the end of the document 
for “A few final notes for /*BEFORE and /*AFTER” for a more in depth discussion of 
the issues around the BEAFTER and BATIME options.  
 

BATIME=### 
BATIME is used to determine how many seconds a job must wait on the input queue 
before becoming eligible for execution if the BEAFTER= option is set to DELAY. 
 

UIDMASK=8 characters each is either an ‘*’ or a ‘U’ 
This specifies the Userid Mask.  It is used in conjunction with the UIDMAX value.  The 
USERID owning each active job (or about to be selected for execution job) is examined 
one character at a time and compares it to the UIDMASK, if the corresponding position 
in the UIDMASK is a ‘U” the character from the UserID is extracted, if the character is 
an ‘*’ the position is ignored.  Once the end of the UserID field is reached, all the 
selected characters are concatenated to form an intermediate UIDMASK value.  The 
UIDMAX value is used as a maximum count for all jobs that have a matching 
UIDMASK VALUE. 

17 



  
Ex. UIDMASK=UU*UU*** 
      UIDMAX=2 
 
 Given the following USERIDS associated with the following jobs that are active: 
 JOBNAME1 has a USERID of ABCD1234 -    masked value = ABD1 
 JOBNAME2 has a USERID of ABBD1999 -    masked value = ABD1 
 JOBNAME3 has a USERID of CBAD2000 -    masked value = CBD2 
 JOBNAME4 has a USERID of CBXD2050 -    masked value = CBD2 
 JOBNAME5 has a USERID of CBXD3050 -    masked value = CBD3 
 
A new job with a userid value of ABDD1000 -  masked value = ABD1, would not be 
allowed to start since it would become the 3rd (1 more than the limit) job with the same 
masked value. 
 
A new job with a userid value of CBBD3978 - masked value = CBD3, would be allowed 
to start since it would only bring the total for that masked value to 2 active jobs 
(JOBNAME5 + the new job with a userid of CBBD3978).  
 
A new job with a userid value of CBXD4050 - masked value = CBD4, would be allowed 
to start since it would only bring the total for that masked value to 1 active job with that 
masked value.  
  
Note - changing the UIDMASK and UIDMAX value to lower values will not affect jobs 
that have already been selected for execution.  They can only affect the decision to allow 
or reject future jobs as they move from the input to execution queues.  
 

JBNMAX=#### 
This is the maximum number of jobs to allow to concurrently execute with the same 
jobname masked value on this JES2 member.  The default value is zero and indicates that 
this test should not be done when JES2 selects a potential job for execution.  

JBNMASK=a mask of 8 characters each either an ‘*’ or a ‘U’ 
This specifies the Jobname Mask.  It is used in conjunction with the JBNMAX value.  
The JOBNAME of each active job (or about to be selected for execution job) is examined 
one character at a time and compared to the JBNMASK.  If the corresponding position in 
the JBNMASK is a ‘U” the character from the JOBNAME is extracted; if the character is 
an ‘*’ the position is ignored.  Once the end of the JOBNAME field is reached, all the 
selected characters are concatenated to form an intermediate JBNMASK value.  The 
JBNMAX value is used as a maximum count for all jobs that have a matching 
JBNMASK VALUE. 
 
Example - JBNMASK=UU***U** 
Given the following active jobnames, and a JBNMASK=U***U** value, and a 
JBNMAX=2 setting; 

18 



 JOBNAME1  masked value = JOE 
JOB0029   masked value = JO2 
JOBX   masked value = JO 
TSNAME1   masked value = TSE 
TSBNAME   masked value = TSM 
TSXXXM2   masked value = TSM 
JOB002X77    masked value =  JO2 

A newly selected job with a jobname of JOB992 would have a JBNMASK value of JO2, 
and would not be allowed to execute yet because it would exceed the limit of 2- 
(JOB002X77 and JOB0029) are already executing.  
 
A newly selected job with a jobname of JOB993 would have a JBNMASK value of JO3 
and with no matching jobname masks would be allowed to execute (the count for 
JBNMASK JO# would then become 1).  
 
A newly selected job with jobname TSODEEP would have a JBNMASK value of TSE, 
and since there is only one other job with a matching mask value (TSNAME1), it would 
be allowed to execute.  Then the limit would be met for that JBNMASK value.  
 
 

ALLOWS={ ON | OFF } 
 
ALLOWS determines whether or not the $SJ command is allowed when using WLM 
managed initiators.  The default OFF prevents the use of $SJ commands from being used.  
Using a $SJ command will override ALL SHARED SPOOL MODS controls and allow 
the job to run immediately.  
 

CLASSOPT={ ON | OFF } 
CLASSOPT determines whether or not the classlim values that limit the number of active 
jobs on this system, in each class are enforced or not.  ON means that the classlim value 
for each class is being enforced.  OFF means that the classlim value for each class is 
NOT being enforced.  Note - setting a low limit will not stop, or cancel any jobs, it will 
just prevent any new jobs from starting until the total number of jobs for each class is 
within the limit specified in the CLASSLIM statement for each class.  
 

CLASSLIM(class specification)=### 
CLASSLIM specifies the maximum number of jobs for each class that will be allowed to 
start.  Valid CLASSLIM class specifications are;  
 A single character. 
 A range of characters ie. A-L or A-Z or 0-9 
 A masked value  ie. * (meaning all classes) 
 A combination of the above separated by commas, ie. CLASSLIM(A-G,J,K,0-9) 
 

19 



 
 
 
 
 

Make Updated Modules available to the JES2 address space 
 
Make the updated JES2 load modules available. That may require a refresh of LLA or 
copying a maintenance pack to production.  All modules created by the JES2 usermods 
are link-edited into DDDEF SHASLNKE, so you may copy the individual modules, or 
recopy the entire JES2 library.  The final step is to shutdown and restart JES2.  This can 
be accomplished via ‘rolling warm starts”.  NOTE - it is not possible to update all of 
these exits simply by using $REPEXIT or $ADDEXIT commands.  Some must be active 
while the JES2 parms are still being read, others create dynamic table extensions and 
only take effect at JES2 initialization.  Generally speaking, you may use $REPEXIT with 
exits other than exit 19 and 24, or the STJTABS and STSSMTBS modules.  It is not 
necessary to shutdown all JES2 tasks in the MAS at the same time.   
 

Perform any final testing - the JES2 mods are now installed! 
 
 
 

Let me know where you are - for updates new releases and a 
coffee mug! 
 
Drop me a line at SGMcCOLLEY@ALLTEL.NET and I will be happy to add you to my 
list of people to notify incase we find a bug, have a bug fix, release the next version and 
so on.  I also have a limited number of ‘SHARED SPOOL MODS’ coffee mugs, they are 
free, just let me know where to send you one. 
 
  If you do by chance find a problem, please let us, know.  While I can NOT offer to fix 
anything, and we never guarantee anything, I will do what I can.  We run these mods as 
well and do not want bugs floating around to bite anyone, especially us.  Same contact 
address. 

20 

mailto:SGMcCOLLEY@ALLTEL.NET


 

How the exits work, and what each does – 
 

Module STJTABS, plus macro definitions 
 
This first mod is a Shared Spool Mod.  The first LOADMOD statement that is added to 
your JES2 parms for these mods is for module STJTABS.  STJTABS creates a dynamic 
$SCANTAB entry for the DISPLAY command, and dynamic $BERTTAB entry to 
define the JQE extensions, and a dynamic $PCETAB to create a special PCE to be used 
with a TQE chain used and maintained by the SHARED SPOOL MODS.  There is one 
entry associated with this module - STPCENT - it is used in the definition of the PCE and 
is not referenced by any EXIT statements.  STPCENT is called when one of our special 
PCEs is dispatched.  Our special PCEs are dispatched at JES2 initialization, where they 
perform local initialization functions and wait to be dispatched.  After initialization the 
special PCEs are dispatched only when a timer queue element that has been $WAITED 
with a $STIMER macro expires.  The function of the code for the special PCE is solely to 
clear the chain of TQEs of posted elements, and to issue a $POST XEQ to cause JES2 to 
look for work to move from the input queue to execution.  This Usermod also establishes 
the needed macros $STQNAME and $STJCTX, BOOLEAN, $SSMTB, $STTQE, 
$STTQEXW, STPCSMFD and updates the $USERCBS macro.  If you already have 
changes other than these mods that affect the $USERCBS macro, you need to merge the 
previous changes with these. 
 

Module STSCX50A, JES2 end of input user exit 
 
 
  The module handles special processing for the special case of a /*ROUTE XEQ HERE 
statement, setting the sysaff if needed.  The real work of this exit is to call common 
module STSX2050, which is also called by exit20.  STSX2050 copies information from 
the JCT to the JQE extension for later use in job selection.  
 

Module STSCX04A and STSCX54A, exit04A and exit54a    
 
This is part of the SHARED SPOOL MODS.  Exits 04 and 54 perform the same ‘JCL 
statement scan’ function, but in different environments.  Exit04A simply sets up a user 
environment, and calls exit54A to do the needed work.   Exit54a validates the /*ROUTE 
XEQ RESNAME statement.  If the RESNAME is a valid JES2 route value, we leave it 
alone and let JES2 handle it.  If the RESNAME is not a valid route value, it is saved in 
the JCT until the rest of the job’s JCL is processed.  It is finally used or discarded by 
exit6.  The exit also performs specialized processing for the special case of /*ROUTE 
XEQ HERE.  

21 



 

Module STSCX54B, exit 54B 
 
This is part of the SHARED SPOOL MODS; it is also used as an exit54.  Note, in the 
exit statements that you add to JES2 parms, EXIT(54) calls two modules; 54a and 54b.  
This is the second one 54b.  It parses and validates the /*BEFORE, AFTER, WITH 
WITHOUT, HOLDFOR, HOLDTIL and CNTL statements, and then saves the 
information in a JCT extension for the job.  This exit makes extensive use of the new 
$STMTTAB facility to scan the JCL statements.  
 

Module STSCX06A, exit 06 
 
This is part of the SHARED SPOOL MODS; it is used as an exit 06.  Module 
STSCX06A turns /*ROUTE XEQ schenvname into SCHENV= values.  If a valid 
SCHENV environment has not been set with a SCHENV statement, or possibly be some 
other means, and if we found a /*ROUTE XEQ statement with a valid SCHENV name 
that also would not have been a valid destination (as in a valid /*ROUTE XEQ statement 
as intended by JES2 specs), then we use that value to set the SCHENV value in this exit. 
 

Module STSC2050 
 
This module is called by both exit 20 and exit 50.  Exits 20 and 50 perform similar 
functions, but in different environments.  The function of module STSC2050 is to move 
JCT extentions information into a BERT JQE extension at end of input time.  
 

Module STSCX20A, exit 20 
 
This is part of the SHARED SPOOL MODS support; and is used as an exit 20.  This exit 
sets up the proper environment and then calls module STSX2050 which in turn copies 
JCT info into the JQE extension before the JCT is lost, when the last of the input JCL has 
been read.  The information is actually written into a JQE extension, not the JQE itself.  
The extension is known as a BERT or Block Extension Reuse Table, and it was defined 
in LSES500.  The BERT is incorporated into JES when the $USERCBS macro was 
updated with the $STQNAME macro that defines the extension.  The $USERCBS macro 
update forces a reassembly of all JES2 modules that might reference the extension. 
 
This exit also checks to see if a /*ROUTE XEQ HERE statement was in the job stream, 
and if one was present, and a sysaff was not already set via the jobcard or some other 
means, the sysaff is set to match the system name that the job was read from. 
 

22 



Module STSCX49A, exit 49 
 
This is part of the SHARED SPOOL MODS; and is used as an exit 49.  This module 
implements the before, after, with, without, holdtil, holdfor and cntl statements by 
rejecting or allowing JES2’s suggested ‘next’ job in the job selection exit, exit49.   Exit 
49 is commonly referred to as the QGOT exit; it is called after JES2 has gone through its 
normal process of selecting the next job on the input queue that is ready for execution, 
but before the job actually starts running.  Based on the /*BEFORE, AFTER, CNTL, 
HOLDFOR, HOLDTIL, WITHOUT, or WITH statements, this exit makes a final 
decision to allow the job to run, or to ask JES2 to locate another candidate job. 
 

Modules STSCX19A, STSCX24A, and STSSMTBS 
 
Module STSSMTBS, is a dynamic $SCANTAB that is used to process SSM parm 
statements in the JES2 parms, and as referenced in $T commands.  $SCANTAB entries 
are extensively used to parse the SSM parms and $T SSM commands.  
 
Module STSCX19A, which is used called for exit 19, is used to create a control block 
used by the SHARED SPOOL MODS in ECSA which is referenced by a Name/Token 
pair.  The STSCX19A checks to see if there is a “left-over” copy of the control block for 
this JES2 member, and if one exists, deal with it appropriately.  Since we made no 
provision for deleting the control block at JES2 termination, this check must be done to 
clean up the control block from a previous run, and possibly from an incomplete JES2 
startup attempt. Finally a new control block is allocated, initialized with default values, 
and pointed to with a temporary Name/Token pair.  
 
Module STSCX24A is used as exit 24.  It checks for appropriate use of related SSM 
statement values.  It also deletes a temporary SSMT name/token pair and replaces it with 
a permanent pair with global scope whose name is dynamically determined, and a 
name/token pair with a fixed name and a local scope.   

23 



 

SMF RECORD LAYOUTS 
 
The SMF records produced by the SHARED SPOOL MODS are subtyped records all 
with the same SMF record number as specified in the SSM,SMFNUM=### statement.  A 
different subtype is specified for each type of record.  
 
 
** * ------------------------------------------------------------- * ** 
** * -- THIS GROUP OF DS'S IS INTEDED TO BE USED AS PART OF AN  -- * ** 
** * -- EXISTING DSECT, TO DESCRIBE AN SMF BUFFER FOR RECORD    -- * ** 
** * -- TYPE 216 (D8) TECH SUBTYPED SMF RECORDS.                -- * ** 
** * ------------------------------------------------------------- * ** 
SMFXLEN  DS    XL2                LRECL INCLUDING RDW                   
SMFXSEG  DS    XL2                SEGMENT - ALWAYS ZEROS                
SMFXFLG  DS    XL1                B'0101 1110' INDICATES SUBTYPES       
SMFXRTY  DS    XL1                SMF RECORD TYPE = 216 = X'D8'         
SMFXTME  DS    XL4                TIME SINCE MIDNIGHT IN 1/100TH SEC.   
*  TOD, USING FORMAT FROM TIME MACRO WITH BIN. INTVL                    
SMFXDTE  DS    PL4                X'01YYDDDF'                           
*  DATE IN PACKED DECIMAL FORM: 01YYDDDF                                
SMFXSID  DS    XL4                SYSID FROM ( SID )                    
SMFXSSI  DS    XL4                SUBSYS ID  (SSID = TECH) OR BLANKS    
SMFXSTY  DS    XL2                RECORD SUBTYPE X'01'-X'FF'            
*                 ****  PROGRAM EXECUTION TRACKING SUBTYPES  ****       
*                         X'01' = TECH PGM EXECUTION                    
*                         X'02' = TECH PGM EXECUTION DUP LIB.           
*                         X'03' = TECH PGM EXECUTION DUP LIB.           
*                         X'04' = TECH PGM EXECUTION DUP LIB.           
*                         X'05' = TECH PGM EXECUTION DUP LIB.           
*                 ****  S.S.M. = SHARED SPOOL MODS SUBTYPES  ****       
*                         X'40' = SSM REJECTION INFORMATION             
*                         X'41' = SSM JOB PASSED SELECTION              
*              FUTURE     X'42' = SSM OPERATOR ACTIONS ($T CMDS)        
*                         X'43' = $SJ - ALLOWED OR REJECTED             
*                         X'44' = SSM JECL CARD ACCEPTED                
*              FUTURE     X'45' = SSM JECL CARD REJCTED JCL ERROR       
*                         X'46' = SSM JOB SELECTION REDRIVEN            
*              FUTURE     X'47' = JES2 SSM PARM ACCEPTED                
*              FUTURE     X'48' = RESERVED FOR SSM                      
*              FUTURE     X'49' = RESERVED FOR SSM                      
SMFXNUMT DS    XL2                NUMBER OF TRIPLETS (SUBTYPES 1-5= 2)  
*                                                                       
SMFXRESV DS    XL2                LENGTH OF SELF-DEFINING SECTION       
*** SELF-DEFINING SECTION ***                                           
* - FIRST TRIPLET - PRODUCT SECTION                                     
OFFPRD01 DS    XL4                OFFSET FROM RDW TO PROD. SECTION      
LENPRD01 DS    XL2                LENGTH OF PRODUCT SECTION             
NUMPRD01 DS    XL2                NUMBER OF PRODUCT SECTIONS            
*- SECOND TRIPLET - SUBTYPED DATA SECTION     
OFFTEC01 DS    XL4                OFFSET FROM RDW TO SUBTYPED DATA      

24 



LENTEC01 DS    XL2                LENGTH OF SUBTYPED SECTION            
NUMTEC01 DS    XL2                NUMBER OF SUBTYPED SECTIONS           
*                                                                       
SDSEND   EQU   *                  END OF SELF DEFINING SECTION          
SMFD8SSD EQU   SDSEND-OFFPRD01    EQU'D LEN OF SELF DEFINING ssm SECT.  
SMFD8TSD EQU   SDSEND-OFFPRD01    EQU'D LEN OF SELF DEFINING tech SECT. 
*                                                                       
* THE PRODUCT SECTION(S) FOR JES2 SSM GOES HERE                         
*                                                                       
         ORG   SDSEND             ORG TO END OF SELF DEFINING SECITON   
*                                                                       
PRDOFS   EQU   *-SMFXLEN          OFFSET TO PRODUCT SECTION             
SMFD8STY DS    XL2                SUBTYPE - REPEATED - JUST IN CASE     
SMFD8SVR DS    XL4                SAME AS UBRVRM AND UJCXVRM            
SMFD8SID DS    XL16               C'SHARED SPOOL MOD'                   
PRDLENS  EQU   *-SMFD8STY         LENGTH OF THE SSM PRODUCT SECTION     
*                                                                       
PRD8JZZ  EQU   *                  END OF SSM PRODUCT SECTION            
*                                                                       
* THE SUBTYPED SHARED SPOOL MODS DATA GOES IN HERE                 
*                                                                       
STDOFFS  EQU   *-SMFXLEN          OFFSET TO SUBTYPED SSM DATA           
*                                                                       
SMFD8S40 DS    XL2                SUBTYPE - X'0040' SSM REJECTION INFO  
SMFD80JI DS    XL4                JOBID                                 
SMFD80JN DS    CL8                JOBNAME                               
SMFD80SI DS    XL4                NODE ID REJECT TOOK PLACE ON          
SMFD80TE DS    XL8                NODE NAME REJECT TOOK PLACE ON        
SMFD80GN DS    XL8                NODE NAME REJECT TOOK PLACE ON        
SMFD80ME DS    CL12               REJECTION REASON                      
SMFD80XT DS    CL8                STCK FORMAT DATE AND TIME             
SMFLNS40 EQU   *-SMFD8S40         LENGTH OF SUBTYPED DATA               
SMFXLS40 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD           
*                                                                       
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION     
*                                                                       
SMFD8S41 DS    XL2                SUBTYPE - X'0041' SSM JOB SELECTED    
SMFD81IN DS    XL2                INPUT NODE ID       JQEINPND          
SMFD81XN DS    XL2                EXECUTION NODE ID   JQEXEQND          
SMFD81CD DS    CL1                JQE CREATION TIME    - JQXCRTME       
SMFD81JC DS    CL1                JOB CLASS   JQEJCLAS                  
SMFD81JI DS    XL4                JOBID                                 
SMFD81JN DS    CL8                JOBNAME JQEJNAME                      
SMFD81RI DS    CL8                USERID OF JOB OWNER    - JQEUSRID     
SMFD81SL DS    CL8                SECURITY LABEL OF JOB   - JQESECLB    
SMFD81XT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC  
SMFD81SE DS    CL16               SCHEDULING ENVIRONMENT NAME -JQASCHE  
SMFD81TE DS    XL8                NODE NAME ACCEPTED ON                 
SMFD81GN DS    CL8                XCF GROUP NAME ACCEPTED ON            
SMFLNS41 EQU   *-SMFD8S41         LENGTH OF SUBTYPED DATA               
SMFXLS41 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD           
*                                                                       
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION     

25 



*                                                                       
SMFD8S42 DS    XL2                SUBTYPE - X'0042' SSM OPER CMDS       
SMFD82XT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC  
* THE ONLY THINGS AN OPERATOR CAN CHANGE ARE IN THE ECSA AREA -         
* HERE IS A BEFORE AND AFTER COPY OF THE ECSA AREA                      
SMFD82NN DS    XL8                NODE NAME ACCEPTED ON                 
SMFD82NX DS    XL8                NODE ID COMMAND ENTERED ON            
SMFD82CM DS    CL140              THE COMMAND ITSELF (IF WE CAN GET IT) 
SMFD82CB DS    XL(SSMTBLEN)       THE ECSA AREA ITSELF (BEFORE)         
SMFD82CA DS    XL(SSMTBLEN)       THE ECSA AREA ITSELF (AFTER)          
SMFLNS42 EQU   *-SMFD8S42         LENGTH OF SUBTYPED DATA               
SMFXLS42 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD           
*                                                                       
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION     
*                                                                      
SMFD8S43 DS    XL2                SUBTYPE - X'0043' $SJ ALLOWED OR NOT 
SMFD83DT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC 
SMFD83NN DS    CL1                A=$SJ IS ALLOWED ;;;; X=$SJ REJECTED 
SMFLNS43 EQU   *-SMFD8S43         LENGTH OF SUBTYPED DATA              
SMFXLS43 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD          
*                                                                      
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION    
*                                                                      
SMFD8S44 DS    XL2                SUBTYPE - X'0044' JECL CARD ACCPETED 
SMFD84IN DS    XL2                INPUT NODE ID       JQEINPND         
SMFD84CD DS    CL1                JQE CREATION TIME    - JQXCRTME      
SMFD84JC DS    CL1                JOB CLASS   JQEJCLAS                 
SMFD84JI DS    XL4                JOBID                                
SMFD84JN DS    CL8                JOBNAME JQEJNAME                     
SMFD84RI DS    CL8                USERID OF JOB OWNER    - JQEUSRID    
SMFD84XT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC 
SMFD84SE DS    CL16               SCHEDULING ENVIRONMENT NAME -JQASCHE 
SMFD84MG DS    CL60               DETAILED INFO FOR SMF                
SMFD84JA DS    CL(UJCXSLN1)       THE STQNAME (JCT EXTENSION) AFTER    
SMFLNS44 EQU   *-SMFD8S44         LENGTH OF SUBTYPED DATA              
SMFXLS44 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD          
*                                                                      
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION    
*                                                                      
SMFD8S45 DS    XL2                SUBTYPE - X'0045' JECL CARD REJECTED 
SMFD85IN DS    XL2                INPUT NODE ID       JQEINPND         
SMFD85CD DS    CL1                JQE CREATION TIME    - JQXCRTME      
SMFD85JC DS    CL1                JOB CLASS   JQEJCLAS                 
SMFD85JI DS    XL4                JOBID                                
SMFD85JN DS    CL8                JOBNAME JQEJNAME                     
SMFD85RI DS    CL8                USERID OF JOB OWNER    - JQEUSRID    
SMFD85SL DS    CL8                SECURITY LABEL OF JOB   - JQESECLB   
SMFD85XT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC 
SMFD85SE DS    CL16               SCHEDULING ENVIRONMENT NAME -JQASCHE 
SMFD85TE DS    XL8                NODE NAME ACCEPTED ON                
SMFD85MG DS    CL140              JECL CARD IMAGE PROCESSED            
SMFLNS45 EQU   *-SMFD8S45         LENGTH OF SUBTYPED DATA              
SMFXLS45 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD          

26 



*                                                                      
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION    
*                                                                      
SMFD8S46 DS    XL2                SUBTYPE - X'0046' QSEL IS REDRIVEN   
SMFD86IN DS    XL2                NODEID SOMEWHERE IN $HCT OR $HCCT    
SMFD86XT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC 
SMFLNS46 EQU   *-SMFD8S46         LENGTH OF SUBTYPED DATA              
SMFXLS46 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD          
*                                                                      
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION    
*                                                                      
SMFD8S47 DS    XL2                SUBTYPE - X'0047' SSM PARM ACCEPTED 
SMFD87IN DS    XL2                NODEID SOMEWHERE IN $HCT OR $HCCT     
SMFD87XT DS    CL8                STCK FORMAT DATE AND TIME - THIS REC  
SMFD87PM DS    CL256              PARM VALUE ACCEPTED                   
SMFD87EC DS    XL(SSMTBLEN)       THE ECSA AREA ITSELF                  
SMFLNS47 EQU   *-SMFD8S47         LENGTH OF SUBTYPED DATA               
SMFXLS47 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD           
*                                                                       
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION     
*                                                                       
SMFD8S48 DS    XL2                SUBTYPE - X'0047' SSM PARM ACCEPTED   
SMFD8801 DS    XL1                SOME DATA TO RECORD(UNUSED FOR NOW)   
SMFD8802 DS    XL1                  MORE DATA TO RECORD                 
SMFLNS48 EQU   *-SMFD8S48         LENGTH OF SUBTYPED DATA               
SMFXLS48 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD           
*                                                                       
         ORG   PRD8JZZ            ORG TO END OF SSM PRODUCT SECTION     
*                                                                       
SMFD8S49 DS    XL2                SUBTYPE - X'0047' SSM PARM ACCEPTED   
SMFD8901 DS    XL1                SOME DATA TO RECORD(UNUSED FOR NOW)   
SMFD8902 DS    XL1                  MORE DATA TO RECORD                 
SMFLNS49 EQU   *-SMFD8S49         LENGTH OF SUBTYPED DATA               
SMFXLS49 EQU   *-SMFXLEN          LENGTH OF THE ENTIRE RECORD           
*                                                                       
*   end of record layout * 
 
 
 
 
 
 
 
 

27 



A few final notes for /*BEFORE and /*AFTER 
 
   A few final notes concerning the relationship between /*BEFORE, and /*AFTER.  
There is a peculiar type of problem that has been around since the first design of the 
Mellon Mods, and I only bring it up here to clarify the potential problem, and offer 
possible solutions for the problem.   
   
  Many people try to use these statements, and stack two or more jobs in the same PDS 
member and submit them all at the same time with one SUBMIT command.  This usually 
works as expected, but sometimes JES2 does not ‘seem’ to PROCESS the jobs in the 
order they appear in the submitted member.  Actually JES2 always processes in the order 
they are presented to JES2 in, however these exits do not ‘see’ the jobs for the purposes 
of job selection until after they have completed the conversion process and you could 
have several different converter tasks running under JES2 which could easily lead to one 
job with a very few DD statements finishing the conversion process and being placed on 
the next queue long before a job with many different DD statements that was submitted 
just before the smaller job.  This can result in a job with a /*AFTER statement for a prior 
job you think JES2 has already seen and processed because of the sequence the jobs are 
in when first submitted, being processed and initiated before JES2 ever finishes reading 
the job that is the object of the /*AFTER statement.  This problem seldom crops up, but 
can be VERY confusing and difficult to explain when it does.  This is also the way the 
mods were originally designed, and have been working for many, many years.  
 
  This problem can be avoided by making sure that jobs with /*BEFORE and /*AFTER 
requirements are submitted separately from each other and in an appropriate sequence, 
however that may not be practical in all situations.  
 
  In an effort to mitigate the potential problem described in the scenario above we have 
introduced the BEAFTER parm that can be set to the value of PREMOD or DELAY.  If 
the parm is set to PREMOD, or allowed to default, the processing will continue as it 
always has in the past.  If however DELAY is set, then the value in parm BATIME will 
be used as a delay time for all jobs.  By delaying all jobs a few seconds after they are first 
available for execution, we are hoping that any ‘slow’ jobs, ones that may take a long 
time in the conversion queue, will have a chance to catch up, and be available for 
consideration when a job with a /*BEFORE or /*AFTER card is considered for possible 
execution.  There is a trade off for this type of processing however, it obviously 
introduces a small delay for all jobs before execution, even though only a small number 
of jobs will potentially benefit from the delay.  There may of course be other reasons why 
a shop may want to delay jobs before allowing them to become available for execution, I 
just can’t think of any.  
 
  There are three other methods that I have come across that can also be used to alleviate 
this special situation that can come up in regard to /*BEFORE and /*AFTER processing.  
First you may opt to have only a single conversion task (see JES2 parm PCEDEF 
CNVTNUM) although this is NOT recommended, it will force jobs to convert one at a 

28 



time, and the ‘out of order’ condition can not occur.   Next you may add one of the new 
/*WAITFOR 00:00:04 statements to all jobs associated with /*BEFORE /*AFTER  
control statements.  This has the same effect as specifying BATIME=4 and 
BEAFTER=DELAY, except that it only affects the jobs that actually might be affected.  
Finally we could code a POSITIVE recognition that the before or after jobname condition 
is being met.  This is considerably more complex than it first sounds, and introduces yet 
more potential problems, such as; how far back do we reference job completions to see if 
a /*AFTER jobname, has been satisfied?   It is however something that I intend to do in 
the future.  
 
  In the meantime, I would strongly suggest that you either use the BEAFTER option of 
DELAY or add /*HOLDFOR 00:00:04 cards to the jobs using /*BEFORE and /*AFTER 
statements.  
 
      
 
Here is a full example of this type of problem - two jobs are in the 
same member to be ‘sub’ed at the same time, although a scheduling 
package that submits tow jobs at very nearly the same time can have the 
same effect.  
 
MEMBERA Contains.  
 //FIRSTJOB  JOB  (123,abc),CLASS=X 
 /*BEFORE  LASTJOB 
 //STEP001    EXEC  PGM=ANYPGM 
  //DD001      DD   DSN=A.B.C.D,DISP=SHR 
 //DD002      DD   DSN=A.B.C.E,DISP=SHR 
 //…… (another 100 dd statements go in here) 

//LASTJOB  JOB  (123,abc),class=x 
 /*AFTER FISTJOB 
 //STEPONLY  EXEC PGM=IEFBR14 
  
MEMBERA is submitted -  
 
  Now the intent is clearly that LASTJOB should run after FIRSTJOB, but 
if they are both submitted at the same time, each job could be assigned 
a different converter processor.  Since LASTJOB has no DD statements 
and only one JOB and one EXEC statement, it will complete conversion 
and move to the XEQ queue long before FIRSTJOB is converted.  Then if 
while FIRSTJOB is still in conversion processing, LASTJOB is selected 
by JES2 as a potential job to execute, the SHARED SPOOL MODS will check 
to see if FIRSTJOB is either in the same queue waiting to execute or is 
already executing, but since it has not even finished conversion it 
will not be found, and LASTJOB will be allowed to run (with the exits 
making the assumption that FIRSTJOB must have already run).  Later, 
maybe only a few milliseconds later, FIRSTJOB may finish conversion and 
be selected for possible execution.  The exits will check to see if 
jobname LASTJOB is in the input queue, will not find it there, and will 
allow the job to execute.   
 
  Now the intent is clearly that LASTJOB should run after FIRSTJOB, but 
if they are both submitted at the same time, each job could be assigned 

29 



a different converter processor.  Since LASTJOB has no DD statements 
and only one JOB and one EXEC statement, it will complete conversion 
and move to the XEQ queue long before FIRSTJOB is converted.  Then if 
while FIRSTJOB is still in conversion processing, LASTJOB is selected 
by JES2 as a potential job to execute, the SHARED SPOOL MODS will check 
to see if FIRSTJOB is either in the same queue waiting to execute or is 
already executing, but since it has not even finished conversion it 
will not be found, and LASTJOB will be allowed to run (with the exits 
making the assumption that FIRSTJOB must have already run).  Later, 
maybe only a few milliseconds later, FIRSTJOB may finish conversion and 
be selected for possible execution.  The exits will check to see if 
jobname LASTJOB is in the input queue, will not find it there, and will 
allow the job to execute.   
 
 
 
 
 
 
                          

30 


	SHARED SPOOL MODS
	Installation Documentation
	For Jes2 1.7 & 1.8
	Installation Instructions
	Table of Contents
	General Information and Overview
	What are the SHARED SPOOL MODS, and what can they do for you
	Interaction with WLM Resources and Scheduling Environments
	Compatibility and Support of the SHARED SPOOL MODS
	History of the SHARED SPOOL MODS, at least as I know it.
	JOB Level Method of Invoking the SHARED SPOOL MODS features
	SYSTEM Level SHARED SPOOL MODS features
	The JES2 $DJ command
	$HASP943 messages
	Additional Information


	Installation Procedures
	Step 0 - Always take a backup before you start
	Step 1 - Apply the Shared Spool Usermods
	Step 2 - Update the JES2 parms
	The format of the SSM statement
	SSM Statement Options -
	SMFNUM=0
	SMFOPT=
	BEAFTER={ PREMOD | DELAY }
	BATIME=###
	UIDMASK=8 characters each is either an ‘*’ or a ‘U’
	JBNMAX=####
	JBNMASK=a mask of 8 characters each either an ‘*’ or a ‘U’
	ALLOWS={ ON | OFF }
	CLASSOPT={ ON | OFF }
	CLASSLIM(class specification)=###

	Make Updated Modules available to the JES2 address space
	Perform any final testing - the JES2 mods are now installed!
	Let me know where you are - for updates new releases and a c

	How the exits work, and what each does –
	Module STJTABS, plus macro definitions
	Module STSCX50A, JES2 end of input user exit
	Module STSCX04A and STSCX54A, exit04A and exit54a
	Module STSCX54B, exit 54B
	Module STSCX06A, exit 06
	Module STSC2050
	Module STSCX20A, exit 20
	Module STSCX49A, exit 49
	Modules STSCX19A, STSCX24A, and STSSMTBS
	SMF RECORD LAYOUTS
	A few final notes for /*BEFORE and /*AFTER



